Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Duplication with transposition distance to the root for $q$-ary strings (2001.06242v1)

Published 17 Jan 2020 in cs.IT and math.IT

Abstract: We study the duplication with transposition distance between strings of length $n$ over a $q$-ary alphabet and their roots. In other words, we investigate the number of duplication operations of the form $x = (abcd) \to y = (abcbd)$, where $x$ and $y$ are strings and $a$, $b$, $c$ and $d$ are their substrings, needed to get a $q$-ary string of length $n$ starting from the set of strings without duplications. For exact duplication, we prove that the maximal distance between a string of length at most $n$ and its root has the asymptotic order $n/\log n$. For approximate duplication, where a $\beta$-fraction of symbols may be duplicated incorrectly, we show that the maximal distance has a sharp transition from the order $n/\log n$ to $\log n$ at $\beta=(q-1)/q$. The motivation for this problem comes from genomics, where such duplications represent a special kind of mutation and the distance between a given biological sequence and its root is the smallest number of transposition mutations required to generate the sequence.

Summary

We haven't generated a summary for this paper yet.