Communication-Efficient Distributed Estimator for Generalized Linear Models with a Diverging Number of Covariates (2001.06194v2)
Abstract: Distributed statistical inference has recently attracted immense attention. The asymptotic efficiency of the maximum likelihood estimator (MLE), the one-step MLE, and the aggregated estimating equation estimator are established for generalized linear models under the "large $n$, diverging $p_n$" framework, where the dimension of the covariates $p_n$ grows to infinity at a polynomial rate $o(n\alpha)$ for some $0<\alpha<1$. Then a novel method is proposed to obtain an asymptotically efficient estimator for large-scale distributed data by two rounds of communication. In this novel method, the assumption on the number of servers is more relaxed and thus practical for real-world applications. Simulations and a case study demonstrate the satisfactory finite-sample performance of the proposed estimators.
- Ping Zhou (116 papers)
- Zhen Yu (19 papers)
- Jingyi Ma (4 papers)
- Maozai Tian (5 papers)
- Ye Fan (11 papers)