Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Effect of Data Ordering in Image Classification (2001.05857v1)

Published 8 Jan 2020 in cs.CV and cs.LG

Abstract: The success stories from deep learning models increase every day spanning different tasks from image classification to natural language understanding. With the increasing popularity of these models, scientists spend more and more time finding the optimal parameters and best model architectures for their tasks. In this paper, we focus on the ingredient that feeds these machines: the data. We hypothesize that the data ordering affects how well a model performs. To that end, we conduct experiments on an image classification task using ImageNet dataset and show that some data orderings are better than others in terms of obtaining higher classification accuracies. Experimental results show that independent of model architecture, learning rate and batch size, ordering of the data significantly affects the outcome. We show these findings using different metrics: NDCG, accuracy @ 1 and accuracy @ 5. Our goal here is to show that not only parameters and model architectures but also the data ordering has a say in obtaining better results.

Summary

We haven't generated a summary for this paper yet.