Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weight Enumerators and Cardinalities for Number-Theoretic Codes (2001.05787v3)

Published 16 Jan 2020 in cs.IT, math.CO, and math.IT

Abstract: The number-theoretic codes are a class of codes defined by single or multiple congruences. These codes are mainly used for correcting insertion and deletion errors, and for correcting asymmetric errors. This paper presents a formula for a generalization of the complete weight enumerator for the number-theoretic codes. This formula allows us to derive the weight enumerators and cardinalities for the number-theoretic codes. As a special case, this paper provides the Hamming weight enumerators and cardinalities of the non-binary Tenengolts' codes, correcting single insertion or deletion. Moreover, we show that the formula deduces the MacWilliams identity for the linear codes over the ring of integers modulo $r$.

Summary

We haven't generated a summary for this paper yet.