Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stereotypical Bias Removal for Hate Speech Detection Task using Knowledge-based Generalizations (2001.05495v1)

Published 15 Jan 2020 in cs.CL, cs.AI, and cs.LG

Abstract: With the ever-increasing cases of hate spread on social media platforms, it is critical to design abuse detection mechanisms to proactively avoid and control such incidents. While there exist methods for hate speech detection, they stereotype words and hence suffer from inherently biased training. Bias removal has been traditionally studied for structured datasets, but we aim at bias mitigation from unstructured text data. In this paper, we make two important contributions. First, we systematically design methods to quantify the bias for any model and propose algorithms for identifying the set of words which the model stereotypes. Second, we propose novel methods leveraging knowledge-based generalizations for bias-free learning. Knowledge-based generalization provides an effective way to encode knowledge because the abstraction they provide not only generalizes content but also facilitates retraction of information from the hate speech detection classifier, thereby reducing the imbalance. We experiment with multiple knowledge generalization policies and analyze their effect on general performance and in mitigating bias. Our experiments with two real-world datasets, a Wikipedia Talk Pages dataset (WikiDetox) of size ~96k and a Twitter dataset of size ~24k, show that the use of knowledge-based generalizations results in better performance by forcing the classifier to learn from generalized content. Our methods utilize existing knowledge-bases and can easily be extended to other tasks

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pinkesh Badjatiya (9 papers)
  2. Manish Gupta (67 papers)
  3. Vasudeva Varma (47 papers)
Citations (101)

Summary

We haven't generated a summary for this paper yet.