Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Causal Discovery from Incomplete Data: A Deep Learning Approach (2001.05343v1)

Published 15 Jan 2020 in cs.LG and stat.ML

Abstract: As systems are getting more autonomous with the development of artificial intelligence, it is important to discover the causal knowledge from observational sensory inputs. By encoding a series of cause-effect relations between events, causal networks can facilitate the prediction of effects from a given action and analyze their underlying data generation mechanism. However, missing data are ubiquitous in practical scenarios. Directly performing existing casual discovery algorithms on partially observed data may lead to the incorrect inference. To alleviate this issue, we proposed a deep learning framework, dubbed Imputated Causal Learning (ICL), to perform iterative missing data imputation and causal structure discovery. Through extensive simulations on both synthetic and real data, we show that ICL can outperform state-of-the-art methods under different missing data mechanisms.

Citations (33)

Summary

We haven't generated a summary for this paper yet.