Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Terrain estimation via vehicle vibration measurement and cubature Kalman filtering (2001.05165v1)

Published 15 Jan 2020 in eess.SY, cs.SY, and eess.SP

Abstract: The extent of vibrations experienced by a vehicle driving over natural terrain defines its ride quality. Generally, surface irregularities, ranging from single discontinuities to random variations of the elevation profile, act as a major source of excitation that induces vibrations in the vehicle body through the tire-soil interaction and suspension system. Therefore, the ride response of off-road vehicles is tightly connected with the ground properties. The objective of this research is to develop a model-based observer that estimates automatically terrain parameters using available onboard sensors. Two acceleration signals, one coming from the vehicle body and one from the wheel suspension, are fed into a dynamic vehicle model that takes into account tire/terrain interaction to estimate ground properties. To solve the resulting nonlinear simultaneous state and parameter estimation problem, the cubature Kalman filter is used, which is shown to outperform the standard extended Kalman filter in terms of accuracy and stability. An extensive set of simulation tests is presented to assess the performance of the proposed estimator under various surface roughness and deformability conditions. Results show the potential of the proposed observer to estimate automatically terrain properties during operations that could be implemented onboard of a general family of intelligent vehicles, ranging from off-road high-speed passenger cars to lightweight and low-speed planetary rovers.

Citations (19)

Summary

We haven't generated a summary for this paper yet.