Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Driver Safety Development Real Time Driver Drowsiness Detection System Based on Convolutional Neural Network (2001.05137v3)

Published 15 Jan 2020 in eess.IV, cs.CV, and cs.LG

Abstract: This paper focuses on the challenge of driver safety on the road and presents a novel system for driver drowsiness detection. In this system, to detect the falling sleep state of the driver as the sign of drowsiness, Convolutional Neural Networks (CNN) are used with regarding the two goals of real-time application, including high accuracy and fastness. Three networks introduced as a potential network for eye status classifcation in which one of them is a Fully Designed Neural Network (FD-NN) and others use Transfer Learning in VGG16 and VGG19 with extra designed layers (TL-VGG). Lack of an available and accurate eye dataset strongly feels in the area of eye closure detection. Therefore, a new comprehensive dataset proposed. The experimental results show the high accuracy and low computational complexity of the eye closure estimation and the ability of the proposed framework on drowsiness detection.

Citations (55)

Summary

We haven't generated a summary for this paper yet.