Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Speaker Recognition Using Speech Enhancement And Attention Model (2001.05031v2)

Published 14 Jan 2020 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: In this paper, a novel architecture for speaker recognition is proposed by cascading speech enhancement and speaker processing. Its aim is to improve speaker recognition performance when speech signals are corrupted by noise. Instead of individually processing speech enhancement and speaker recognition, the two modules are integrated into one framework by a joint optimisation using deep neural networks. Furthermore, to increase robustness against noise, a multi-stage attention mechanism is employed to highlight the speaker related features learned from context information in time and frequency domain. To evaluate speaker identification and verification performance of the proposed approach, we test it on the dataset of VoxCeleb1, one of mostly used benchmark datasets. Moreover, the robustness of our proposed approach is also tested on VoxCeleb1 data when being corrupted by three types of interferences, general noise, music, and babble, at different signal-to-noise ratio (SNR) levels. The obtained results show that the proposed approach using speech enhancement and multi-stage attention models outperforms two strong baselines not using them in most acoustic conditions in our experiments.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yanpei Shi (12 papers)
  2. Qiang Huang (50 papers)
  3. Thomas Hain (58 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.