Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-Rank Parity-Check Codes over the Ring of Integers Modulo a Prime Power (2001.04800v2)

Published 14 Jan 2020 in cs.IT, cs.CR, and math.IT

Abstract: We define and analyze low-rank parity-check (LRPC) codes over extension rings of the finite chain ring $\mathbb{Z}_{pr}$, where $p$ is a prime and $r$ is a positive integer. LRPC codes have originally been proposed by Gaborit et al.(2013) over finite fields for cryptographic applications. The adaption to finite rings is inspired by a paper by Kamche et al. (2019), which constructed Gabidulin codes over finite principle ideal rings with applications to space-time codes and network coding. We give a decoding algorithm based on simple linear-algebraic operations. Further, we derive an upper bound on the failure probability of the decoder. The upper bound is valid for errors whose rank is equal to the free rank.

Citations (9)

Summary

We haven't generated a summary for this paper yet.