Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Black-box Video Attack with Reinforcement Learning (2001.03754v3)

Published 11 Jan 2020 in cs.CV

Abstract: Adversarial attacks on video recognition models have been explored recently. However, most existing works treat each video frame equally and ignore their temporal interactions. To overcome this drawback, a few methods try to select some key frames and then perform attacks based on them. Unfortunately, their selection strategy is independent of the attacking step, therefore the resulting performance is limited. Instead, we argue the frame selection phase is closely relevant with the attacking phase. The key frames should be adjusted according to the attacking results. For that, we formulate the black-box video attacks into a Reinforcement Learning (RL) framework. Specifically, the environment in RL is set as the recognition model, and the agent in RL plays the role of frame selecting. By continuously querying the recognition models and receiving the attacking feedback, the agent gradually adjusts its frame selection strategy and adversarial perturbations become smaller and smaller. We conduct a series of experiments with two mainstream video recognition models: C3D and LRCN on the public UCF-101 and HMDB-51 datasets. The results demonstrate that the proposed method can significantly reduce the adversarial perturbations with efficient query times.

Citations (45)

Summary

We haven't generated a summary for this paper yet.