Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OO-VR: NUMA Friendly Object-Oriented VR Rendering Framework For Future NUMA-Based Multi-GPU Systems (2001.03537v1)

Published 8 Jan 2020 in cs.DC and cs.GR

Abstract: With the strong computation capability, NUMA-based multi-GPU system is a promising candidate to provide sustainable and scalable performance for Virtual Reality. However, the entire multi-GPU system is viewed as a single GPU which ignores the data locality in VR rendering during the workload distribution, leading to tremendous remote memory accesses among GPU models. By conducting comprehensive characterizations on different kinds of parallel rendering frameworks, we observe that distributing the rendering object along with its required data per GPM can reduce the inter-GPM memory accesses. However, this object-level rendering still faces two major challenges in NUMA-based multi-GPU system: (1) the large data locality between the left and right views of the same object and the data sharing among different objects and (2) the unbalanced workloads induced by the software-level distribution and composition mechanisms. To tackle these challenges, we propose object-oriented VR rendering framework (OO-VR) that conducts the software and hardware co-optimization to provide a NUMA friendly solution for VR multi-view rendering in NUMA-based multi-GPU systems. We first propose an object-oriented VR programming model to exploit the data sharing between two views of the same object and group objects into batches based on their texture sharing levels. Then, we design an object aware runtime batch distribution engine and distributed hardware composition unit to achieve the balanced workloads among GPMs. Finally, evaluations on our VR featured simulator show that OO-VR provides 1.58x overall performance improvement and 76% inter-GPM memory traffic reduction over the state-of-the-art multi-GPU systems. In addition, OO-VR provides NUMA friendly performance scalability for the future larger multi-GPU scenarios with ever increasing asymmetric bandwidth between local and remote memory.

Citations (20)

Summary

We haven't generated a summary for this paper yet.