Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Seismic horizon detection with neural networks (2001.03390v1)

Published 10 Jan 2020 in cs.CV and eess.IV

Abstract: Over the last few years, Convolutional Neural Networks (CNNs) were successfully adopted in numerous domains to solve various image-related tasks, ranging from simple classification to fine borders annotation. Tracking seismic horizons is no different, and there are a lot of papers proposing the usage of such models to avoid time-consuming hand-picking. Unfortunately, most of them are (i) either trained on synthetic data, which can't fully represent the complexity of subterranean structures, (ii) trained and tested on the same cube, or (iii) lack reproducibility and precise descriptions of the model-building process. With all that in mind, the main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.