Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporally Folded Convolutional Neural Networks for Sequence Forecasting (2001.03340v1)

Published 10 Jan 2020 in cs.LG, cs.CV, and stat.ML

Abstract: In this work we propose a novel approach to utilize convolutional neural networks for time series forecasting. The time direction of the sequential data with spatial dimensions $D=1,2$ is considered democratically as the input of a spatiotemporal $(D+1)$-dimensional convolutional neural network. Latter then reduces the data stream from $D +1 \to D$ dimensions followed by an incriminator cell which uses this information to forecast the subsequent time step. We empirically compare this strategy to convolutional LSTM's and LSTM's on their performance on the sequential MNIST and the JSB chorals dataset, respectively. We conclude that temporally folded convolutional neural networks (TFC's) may outperform the conventional recurrent strategies.

Summary

We haven't generated a summary for this paper yet.