Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Backdoor Attacks against Transfer Learning with Pre-trained Deep Learning Models (2001.03274v2)

Published 10 Jan 2020 in cs.LG and cs.CR

Abstract: Transfer learning provides an effective solution for feasibly and fast customize accurate \textit{Student} models, by transferring the learned knowledge of pre-trained \textit{Teacher} models over large datasets via fine-tuning. Many pre-trained Teacher models used in transfer learning are publicly available and maintained by public platforms, increasing their vulnerability to backdoor attacks. In this paper, we demonstrate a backdoor threat to transfer learning tasks on both image and time-series data leveraging the knowledge of publicly accessible Teacher models, aimed at defeating three commonly-adopted defenses: \textit{pruning-based}, \textit{retraining-based} and \textit{input pre-processing-based defenses}. Specifically, (A) ranking-based selection mechanism to speed up the backdoor trigger generation and perturbation process while defeating \textit{pruning-based} and/or \textit{retraining-based defenses}. (B) autoencoder-powered trigger generation is proposed to produce a robust trigger that can defeat the \textit{input pre-processing-based defense}, while guaranteeing that selected neuron(s) can be significantly activated. (C) defense-aware retraining to generate the manipulated model using reverse-engineered model inputs. We launch effective misclassification attacks on Student models over real-world images, brain Magnetic Resonance Imaging (MRI) data and Electrocardiography (ECG) learning systems. The experiments reveal that our enhanced attack can maintain the $98.4\%$ and $97.2\%$ classification accuracy as the genuine model on clean image and time series inputs respectively while improving $27.9\%-100\%$ and $27.1\%-56.1\%$ attack success rate on trojaned image and time series inputs respectively in the presence of pruning-based and/or retraining-based defenses.

Citations (94)

Summary

We haven't generated a summary for this paper yet.