Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Registration of ultrasound volumes based on Euclidean distance transform (2001.03204v1)

Published 9 Jan 2020 in eess.IV

Abstract: During neurosurgical operations, surgeons can decide to acquire intraoperative data to better proceed with the removal of a tumor. A valid option is given by ultrasound (US) imaging, which can be easily obtained at subsequent surgical stages, giving therefore multiple updates of the resection cavity. To improve the efficacy of the intraoperative guidance, neurosurgeons may benefit from having a direct correspondence between anatomical structures identified at different US acquisitions. In this context, the commonly available neuronavigation systems already provide registration methods, which however are not enough accurate to overcome the anatomical changes happening during resection. Therefore, our aim with this work is to improve the registration of intraoperative US volumes. In the proposed methodology, first a distance mapping of automatically segmented anatomical structures is computed and then the transformed images are utilized in the registration step. Our solution is tested on a public dataset of 17 cases, where the average landmark registration error between volumes acquired at the beginning and at the end of neurosurgical procedures is reduced from 3.55mm to 1.27mm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.