Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Bound on Vertex Degree Version of Erdős Matching Conjecture (2001.02820v4)

Published 9 Jan 2020 in math.CO

Abstract: For a $k$-uniform hypergraph $H$, let $\delta_1(H)$ denote the minimum vertex degree of $H$, and $\nu(H)$ denote the size of the largest matching in $H$. In this paper, we show that for any $k\geq 3$ and $\beta>0$, there exists an integer $n_0(\beta,k)$ such that for positive integers $n\geq n_0$ and $m\leq (\frac{k}{2(k-1)}-\beta)\frac{n}{k}$, if $H$ is an $n$-vertex $k$-graph with $\delta_1(H)>{{n-1}\choose {k-1}}-{{n-m}\choose {k-1}},$ then $\nu(H)\geq m$. This improves upon earlier results of Bollob\'{a}s, Daykin and Erd\H{o}s (1976) for the range $n> 2k3(m+1)$ and Huang and Zhao (2017) for the range $n\geq 3k2 m$.

Summary

We haven't generated a summary for this paper yet.