Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anisotropic elliptic equations with gradient-dependent lower order terms and $L^1$ data (2001.02754v3)

Published 8 Jan 2020 in math.AP

Abstract: We prove the existence of a weak solution for a general class of Dirichlet anisotropic elliptic problems such as $\mathcal Au+\Phi(x,u,\nabla u)=\mathfrak{B}u+f$ in $\Omega$, where $\Omega$ is a bounded open subset of $\mathbb RN$ and $f\in L1(\Omega)$ is arbitrary. The principal part is a divergence-form nonlinear anisotropic operator $\mathcal A$, the prototype of which is $\mathcal A u=-\sum_{j=1}N \partial_j(|\partial_j u|{p_j-2}\partial_j u)$ with $p_j>1$ for all $1\leq j\leq N$ and $\sum_{j=1}N (1/p_j)>1$. As a novelty in this paper, our lower order terms involve a new class of operators $\mathfrak B$ such that $\mathcal{A}-\mathfrak{B}$ is bounded, coercive and pseudo-monotone from $W_0{1,\overrightarrow{p}}(\Omega)$ into its dual, as well as a gradient-dependent nonlinearity $\Phi$ with an "anisotropic natural growth" in the gradient and a good sign condition.

Summary

We haven't generated a summary for this paper yet.