Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep learning reveals hidden interactions in complex systems (2001.02539v4)

Published 3 Jan 2020 in cond-mat.stat-mech and cs.LG

Abstract: Rich phenomena from complex systems have long intrigued researchers, and yet modeling system micro-dynamics and inferring the forms of interaction remain challenging for conventional data-driven approaches, being generally established by human scientists. In this study, we propose AgentNet, a model-free data-driven framework consisting of deep neural networks to reveal and analyze the hidden interactions in complex systems from observed data alone. AgentNet utilizes a graph attention network with novel variable-wise attention to model the interaction between individual agents, and employs various encoders and decoders that can be selectively applied to any desired system. Our model successfully captured a wide variety of simulated complex systems, namely cellular automata (discrete), the Vicsek model (continuous), and active Ornstein--Uhlenbeck particles (non-Markovian) in which, notably, AgentNet's visualized attention values coincided with the true interaction strength and exhibited collective behavior that was absent in the training data. A demonstration with empirical data from a flock of birds showed that AgentNet could identify hidden interaction ranges exhibited by real birds, which cannot be detected by conventional velocity correlation analysis. We expect our framework to open a novel path to investigating complex systems and to provide insight into general process-driven modeling.

Citations (4)

Summary

We haven't generated a summary for this paper yet.