Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms (2001.02498v1)

Published 31 Dec 2019 in cs.DC and cs.LG

Abstract: Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs. It is challenging to accelerate training of GCNs, due to (1) substantial and irregular data communication to propagate information within the graph, and (2) intensive computation to propagate information along the neural network layers. To address these challenges, we design a novel accelerator for training GCNs on CPU-FPGA heterogeneous systems, by incorporating multiple algorithm-architecture co-optimizations. We first analyze the computation and communication characteristics of various GCN training algorithms, and select a subgraph-based algorithm that is well suited for hardware execution. To optimize the feature propagation within subgraphs, we propose a lightweight pre-processing step based on a graph theoretic approach. Such pre-processing performed on the CPU significantly reduces the memory access requirements and the computation to be performed on the FPGA. To accelerate the weight update in GCN layers, we propose a systolic array based design for efficient parallelization. We integrate the above optimizations into a complete hardware pipeline, and analyze its load-balance and resource utilization by accurate performance modeling. We evaluate our design on a Xilinx Alveo U200 board hosted by a 40-core Xeon server. On three large graphs, we achieve an order of magnitude training speedup with negligible accuracy loss, compared with state-of-the-art implementation on a multi-core platform.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hanqing Zeng (17 papers)
  2. Viktor Prasanna (76 papers)
Citations (119)

Summary

We haven't generated a summary for this paper yet.