Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unsupervised Learning for Passive Beamforming

Published 8 Jan 2020 in cs.IT, eess.SP, and math.IT | (2001.02348v3)

Abstract: Reconfigurable intelligent surface (RIS) has recently emerged as a promising candidate to improve the energy and spectral efficiency of wireless communication systems. However, the unit modulus constraint on the phase shift of reflecting elements makes the design of optimal passive beamforming solution a challenging issue. The conventional approach is to find a suboptimal solution using the semi-definite relaxation (SDR) technique, yet the resultant suboptimal iterative algorithm usually incurs high complexity, hence is not amenable for real-time implementation. Motivated by this, we propose a deep learning approach for passive beamforming design in RIS-assisted systems. In particular, a customized deep neural network is trained offline using the unsupervised learning mechanism, which is able to make real-time prediction when deployed online. Simulation results show that the proposed approach maintains most of the performance while significantly reduces computation complexity when compared with SDR-based approach.

Citations (133)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.