Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Thompson Sampling for Smoother-than-Lipschitz Bandits (2001.02323v2)

Published 8 Jan 2020 in cs.LG and stat.ML

Abstract: Thompson Sampling is a well established approach to bandit and reinforcement learning problems. However its use in continuum armed bandit problems has received relatively little attention. We provide the first bounds on the regret of Thompson Sampling for continuum armed bandits under weak conditions on the function class containing the true function and sub-exponential observation noise. Our bounds are realised by analysis of the eluder dimension, a recently proposed measure of the complexity of a function class, which has been demonstrated to be useful in bounding the Bayesian regret of Thompson Sampling for simpler bandit problems under sub-Gaussian observation noise. We derive a new bound on the eluder dimension for classes of functions with Lipschitz derivatives, and generalise previous analyses in multiple regards.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. James A. Grant (9 papers)
  2. David S. Leslie (25 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.