Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Vector Autoregressive Models with Spatially Structured Coefficients for Time Series on a Spatial Grid (2001.02250v2)

Published 7 Jan 2020 in stat.ME and stat.AP

Abstract: We propose a parsimonious spatiotemporal model for time series data on a spatial grid. Our model is capable of dealing with high-dimensional time series data that may be collected at hundreds of locations and capturing the spatial non-stationarity. In essence, our model is a vector autoregressive model that utilizes the spatial structure to achieve parsimony of autoregressive matrices at two levels. The first level ensures the sparsity of the autoregressive matrices using a lagged-neighborhood scheme. The second level performs a spatial clustering of the non-zero autoregressive coefficients such that nearby locations share similar coefficients. This model is interpretable and can be used to identify geographical subregions, within each of which, the time series share similar dynamical behavior with homogeneous autoregressive coefficients. The model parameters are obtained using the penalized maximum likelihood with an adaptive fused Lasso penalty. The estimation procedure is easy to implement and can be tailored to the need of a modeler. We illustrate the performance of the proposed estimation algorithm in a simulation study. We apply our model to a wind speed time series dataset generated from a climate model over Saudi Arabia to illustrate its usefulness. Limitations and possible extensions of our method are also discussed.

Summary

We haven't generated a summary for this paper yet.