Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivalence Classes and Conditional Hardness in Massively Parallel Computations (2001.02191v1)

Published 7 Jan 2020 in cs.DC and cs.DS

Abstract: The Massively Parallel Computation (MPC) model serves as a common abstraction of many modern large-scale data processing frameworks, and has been receiving increasingly more attention over the past few years, especially in the context of classical graph problems. So far, the only way to argue lower bounds for this model is to condition on conjectures about the hardness of some specific problems, such as graph connectivity on promise graphs that are either one cycle or two cycles, usually called the one cycle vs. two cycles problem. This is unlike the traditional arguments based on conjectures about complexity classes (e.g., $\textsf{P} \neq \textsf{NP}$), which are often more robust in the sense that refuting them would lead to groundbreaking algorithms for a whole bunch of problems. In this paper we present connections between problems and classes of problems that allow the latter type of arguments. These connections concern the class of problems solvable in a sublogarithmic amount of rounds in the MPC model, denoted by $\textsf{MPC}(o(\log N))$, and some standard classes concerning space complexity, namely $\textsf{L}$ and $\textsf{NL}$, and suggest conjectures that are robust in the sense that refuting them would lead to many surprisingly fast new algorithms in the MPC model. We also obtain new conditional lower bounds, and prove new reductions and equivalences between problems in the MPC model.

Citations (16)

Summary

We haven't generated a summary for this paper yet.