Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CatBoostLSS -- An extension of CatBoost to probabilistic forecasting (2001.02121v1)

Published 4 Jan 2020 in stat.ML, cs.LG, and stat.ME

Abstract: We propose a new framework of CatBoost that predicts the entire conditional distribution of a univariate response variable. In particular, CatBoostLSS models all moments of a parametric distribution (i.e., mean, location, scale and shape [LSS]) instead of the conditional mean only. Choosing from a wide range of continuous, discrete and mixed discrete-continuous distributions, modelling and predicting the entire conditional distribution greatly enhances the flexibility of CatBoost, as it allows to gain insight into the data generating process, as well as to create probabilistic forecasts from which prediction intervals and quantiles of interest can be derived. We present both a simulation study and real-world examples that demonstrate the benefits of our approach.

Citations (9)

Summary

We haven't generated a summary for this paper yet.