Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Great Recession Using Machine Learning Algorithms (2001.02115v1)

Published 2 Jan 2020 in econ.GN, physics.soc-ph, and q-fin.EC

Abstract: Nyman and Ormerod (2017) show that the machine learning technique of random forests has the potential to give early warning of recessions. Applying the approach to a small set of financial variables and replicating as far as possible a genuine ex ante forecasting situation, over the period since 1990 the accuracy of the four-step ahead predictions is distinctly superior to those actually made by the professional forecasters. Here we extend the analysis by examining the contributions made to the Great Recession of the late 2000s by each of the explanatory variables. We disaggregate private sector debt into its household and non-financial corporate components. We find that both household and non-financial corporate debt were key determinants of the Great Recession. We find a considerable degree of non-linearity in the explanatory models. In contrast, the public sector debt to GDP ratio appears to have made very little contribution. It did rise sharply during the Great Recession, but this was as a consequence of the sharp fall in economic activity rather than it being a cause. We obtain similar results for both the United States and the United Kingdom.

Summary

We haven't generated a summary for this paper yet.