Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Critical Dimension and Negative Specific Heat in One-dimensional Large-N Reduced Models (2001.02109v4)

Published 7 Jan 2020 in hep-th, gr-qc, and hep-lat

Abstract: We investigate critical phenomena of the Yang-Mills (YM) type one-dimensional matrix model that is a large-$N$ reduction (or dimensional reduction) of the $D+1$ dimensional $U(N)$ pure YM theory (bosonic BFSS model). This model shows a large-$N$ phase transition at finite temperature, which is analogous to the confinement/deconfinement transition of the original YM theory. We study the matrix model at a three-loop calculation via the "principle of minimum sensitivity" and find that there is a critical dimension $D=35.5$: At $D \le 35$, the transition is of first order, while it is of second order at $D\ge 36$. Furthermore, we evaluate several observables in our method, and they nicely reproduce the existing Monte Carlo results. Through the gauge/gravity correspondence, the transition is expected to be related to a Gregory-Laflamme transition in gravity, and we argue that the existence of the critical dimension is qualitatively consistent with it. Besides, in the first order transition case, a stable phase having negative specific heat appears in the microcanonical ensemble, which is similar to Schwarzschild black holes. We study some properties of this phase.

Summary

We haven't generated a summary for this paper yet.