Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Macromolecule Classification Based on the Amino-acid Sequence (2001.01717v2)

Published 6 Jan 2020 in q-bio.BM and cs.LG

Abstract: Deep learning is playing a vital role in every field which involves data. It has emerged as a strong and efficient framework that can be applied to a broad spectrum of complex learning problems which were difficult to solve using traditional machine learning techniques in the past. In this study we focused on classification of protein sequences with deep learning techniques. The study of amino acid sequence is vital in life sciences. We used different word embedding techniques from Natural Language processing to represent the amino acid sequence as vectors. Our main goal was to classify sequences to four group of classes, that are DNA, RNA, Protein and hybrid. After several tests we have achieved almost 99% of train and test accuracy. We have experimented on CNN, LSTM, Bidirectional LSTM, and GRU.

Summary

We haven't generated a summary for this paper yet.