Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some remarks on Tsallis relative operator entropy (2001.01342v1)

Published 6 Jan 2020 in math.FA

Abstract: This paper intends to give some new estimates for Tsallis relative operator entropy ${{T}{v}}\left( A|B \right)=\frac{A{{\natural}{v}}B-A}{v}$. Let $A$ and $B$ be two positive invertible operators with the spectra contained in the interval $J \subset (0,\infty)$. We prove for any $v\in \left[ -1,0 \right)\cup \left( 0,1 \right]$, $$ (\ln_v t)A+\left( A{{\natural}{v}}B+tA{{\natural}{v-1}}B \right)\le {{T}_{v}}\left( A|B \right) \le (\ln_v s)A+{{s}{v-1}}\left( B-sA \right) $$ where $s,t\in J$. Especially, the upper bound for Tsallis relative operator entropy is a non-trivial new result. Meanwhile, some related and new results are also established. In particular, the monotonicity for Tsallis relative operator entropy is improved. Furthermore, we introduce the exponential type relative operator entropies which are special cases of the perspective and we give inequalities among them and usual relative operator entropies.

Summary

We haven't generated a summary for this paper yet.