Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Automatic Threat Detection: A Survey of Advances of Deep Learning within X-ray Security Imaging (2001.01293v2)

Published 5 Jan 2020 in cs.CV

Abstract: X-ray security screening is widely used to maintain aviation/transport security, and its significance poses a particular interest in automated screening systems. This paper aims to review computerised X-ray security imaging algorithms by taxonomising the field into conventional machine learning and contemporary deep learning applications. The first part briefly discusses the classical machine learning approaches utilised within X-ray security imaging, while the latter part thoroughly investigates the use of modern deep learning algorithms. The proposed taxonomy sub-categorises the use of deep learning approaches into supervised, semi-supervised and unsupervised learning, with a particular focus on object classification, detection, segmentation and anomaly detection tasks. The paper further explores well-established X-ray datasets and provides a performance benchmark. Based on the current and future trends in deep learning, the paper finally presents a discussion and future directions for X-ray security imagery.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Toby Breckon (8 papers)
  2. Samet Akcay (19 papers)
Citations (137)

Summary

We haven't generated a summary for this paper yet.