Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Completion with Prior Subspace Information via Maximizing Correlation (2001.01152v2)

Published 5 Jan 2020 in cs.IT and math.IT

Abstract: This paper studies the problem of completing a low-rank matrix from a few of its random entries with the aid of prior information. We suggest a strategy to incorporate prior information into the standard matrix completion procedure by maximizing the correlation between the original signal and the prior information. We also establish performance guarantees for the proposed method, which show that with suitable prior information, the proposed procedure can reduce the sample complexity of the standard matrix completion by a logarithmic factor. To illustrate the theory, we further analyze an important practical application where the prior subspace information is available. Both synthetic and real-world experiments are provided to verify the validity of the theory.

Citations (3)

Summary

We haven't generated a summary for this paper yet.