Papers
Topics
Authors
Recent
2000 character limit reached

Tensor-Tensor Products for Optimal Representation and Compression

Published 31 Dec 2019 in math.NA and cs.NA | (2001.00046v1)

Abstract: In this era of big data, data analytics and machine learning, it is imperative to find ways to compress large data sets such that intrinsic features necessary for subsequent analysis are not lost. The traditional workhorse for data dimensionality reduction and feature extraction has been the matrix SVD, which presupposes that the data has been arranged in matrix format. Our main goal in this study is to show that high-dimensional data sets are more compressible when treated as tensors (aka multiway arrays) and compressed via tensor-SVDs under the tensor-tensor product structures in (Kilmer and Martin, 2011; Kernfeld et al., 2015). We begin by proving Eckart Young optimality results for families of tensor-SVDs under two different truncation strategies. As such optimality properties can be proven in both matrix and tensor-based algebras, a fundamental question arises: does the tensor construct subsume the matrix construct in terms of representation efficiency? The answer is yes, as shown when we prove that a tensor-tensor representation of an equal dimensional spanning space can be superior to its matrix counterpart. We then investigate how the compressed representation provided by the truncated tensor-SVD is related both theoretically and in compression performance to its closest tensor-based analogue, truncated HOSVD (De Lathauwer et al., 2000; De Lathauwer and Vandewalle, 2004), thereby showing the potential advantages of our tensor-based algorithms. Finally, we propose new tensor truncated SVD variants, namely multi-way tensor SVDs, provide further approximated representation efficiency and discuss under which conditions they are considered optimal. We conclude with a numerical study demonstrating the utility of the theory.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.