Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Abelian Three-Loop Braiding Statistics for 3D Fermionic Topological Phases (1912.13505v2)

Published 31 Dec 2019 in cond-mat.str-el, hep-th, math-ph, and math.MP

Abstract: Fractional statistics is one of the most intriguing features of topological phases in 2D. In particular, the so-called non-Abelian statistics plays a crucial role towards realizing universal topological quantum computation. Recently, the study of topological phases has been extended to 3D and it has been proposed that loop-like extensive objects can also carry fractional statistics. In this work, we systematically study the so-called three-loop braiding statistics for loop-like excitations for 3D fermionic topological phases. Most surprisingly, we discovered new types of non-Abelian three-loop braiding statistics that can only be realized in fermionic systems (or equivalently bosonic systems with fermionic particles). The simplest example of such non-Abelian braiding statistics can be realized in interacting fermionic systems with a gauge group $\mathbb{Z}_2 \times \mathbb{Z}_8$ or $\mathbb{Z}_4 \times \mathbb{Z}_4$, and the physical origin of non-Abelian statistics can be viewed as attaching an open Majorana chain onto a pair of linked loops, which will naturally reduce to the well known Ising non-Abelian statistics via the standard dimension reduction scheme. Moreover, due to the correspondence between gauge theories with fermionic particles and classifying fermionic symmetry-protected topological (FSPT) phases with unitary symmetries, our study also give rise to an alternative way to classify FSPT phases with unitary symmetries. We further compare the classification results for FSPT phases with arbitrary Abelian total symmetry $Gf$ and find systematical agreement with previous studies using other methods. We believe that the proposed framework of understanding three-loop braiding statistics (including both Abelian and non-Abelian cases) in interacting fermion systems applies for generic fermonic topological phases in 3D.

Summary

We haven't generated a summary for this paper yet.