Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Neural Architecture Search Methods for Deep Networks (1912.13183v1)

Published 31 Dec 2019 in cs.CV

Abstract: There are many research works on the designing of architectures for the deep neural networks (DNN), which are named neural architecture search (NAS) methods. Although there are many automatic and manual techniques for NAS problems, there is no unifying model in which these NAS methods can be explored and compared. In this paper, we propose a general abstraction model for NAS methods. By using the proposed framework, it is possible to compare different design approaches for categorizing and identifying critical areas of interest in designing DNN architectures. Also, under this framework, different methods in the NAS area are summarized; hence a better view of their advantages and disadvantages is possible.

Citations (5)

Summary

We haven't generated a summary for this paper yet.