Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expanding the scope of statistical computing: Training statisticians to be software engineers (1912.13076v3)

Published 30 Dec 2019 in stat.CO and stat.OT

Abstract: Traditionally, statistical computing courses have taught the syntax of a particular programming language or specific statistical computation methods. Since the publication of Nolan and Temple Lang (2010), we have seen a greater emphasis on data wrangling, reproducible research, and visualization. This shift better prepares students for careers working with complex datasets and producing analyses for multiple audiences. But, we argue, statisticians are now often called upon to develop statistical software, not just analyses, such as R packages implementing new analysis methods or machine learning systems integrated into commercial products. This demands different skills. We describe a graduate course that we developed to meet this need by focusing on four themes: programming practices; software design; important algorithms and data structures; and essential tools and methods. Through code review and revision, and a semester-long software project, students practice all the skills of software engineering. The course allows students to expand their understanding of computing as applied to statistical problems while building expertise in the kind of software development that is increasingly the province of the working statistician. We see this as a model for the future evolution of the computing curriculum in statistics and data science.

Summary

We haven't generated a summary for this paper yet.