Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Federated Learning Through Representation Matching and Adaptive Hyper-parameters (1912.13075v1)

Published 30 Dec 2019 in cs.LG and stat.ML

Abstract: Federated learning is a distributed, privacy-aware learning scenario which trains a single model on data belonging to several clients. Each client trains a local model on its data and the local models are then aggregated by a central party. Current federated learning methods struggle in cases with heterogeneous client-side data distributions which can quickly lead to divergent local models and a collapse in performance. Careful hyper-parameter tuning is particularly important in these cases but traditional automated hyper-parameter tuning methods would require several training trials which is often impractical in a federated learning setting. We describe a two-pronged solution to the issues of robustness and hyper-parameter tuning in federated learning settings. We propose a novel representation matching scheme that reduces the divergence of local models by ensuring the feature representations in the global (aggregate) model can be derived from the locally learned representations. We also propose an online hyper-parameter tuning scheme which uses an online version of the REINFORCE algorithm to find a hyper-parameter distribution that maximizes the expected improvements in training loss. We show on several benchmarks that our two-part scheme of local representation matching and global adaptive hyper-parameters significantly improves performance and training robustness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Hesham Mostafa (26 papers)
Citations (36)

Summary

We haven't generated a summary for this paper yet.