2000 character limit reached
Rank One Hilbert Geometries (1912.13013v3)
Published 30 Dec 2019 in math.GT and math.DG
Abstract: We develop a notion of rank one properly convex domains (or Hilbert geometries) in the real projective space. This is in the spirit of rank one non-positively curved Riemannian manifolds and CAT(0) spaces. We define rank one isometries for Hilbert geometries and characterize them as being equivalent to contracting elements (in the sense of geometric group theory). We prove that if a discrete subgroup of automorphisms of a Hilbert geometry contains a rank one isometry, then the subgroup is either virtually cyclic or acylindrically hyperbolic. This leads to several applications like infinite-dimensionality of the space of quasi-morphisms, counting results for conjugacy classes and genericity results for rank one isometries.
- Werner Ballmann. Axial isometries of manifolds of nonpositive curvature. Math. Ann., 259(1):131–144, 1982.
- Werner Ballmann. Nonpositively curved manifolds of higher rank. Annals of Mathematics, 122(3):597–609, 1985.
- Werner Ballmann. Lectures on spaces of nonpositive curvature, volume 25 of DMV Seminar. Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin.
- Orbihedra of nonpositive curvature. Publications Mathématiques de l’IHÉS, 82:169–209, 1995.
- Constructing group actions on quasi-trees and applications to mapping class groups. Publ. Math. Inst. Hautes Études Sci., 122:1–64, 2015.
- Bounded cohomology with coefficients in uniformly convex Banach spaces. Comment. Math. Helv., 91(2):203–218, 2016.
- Acylindrical actions on projection complexes. Enseign. Math., 65(1-2):1–32, 2019.
- Convex projective structures on nonhyperbolic three-manifolds. Geom. Topol., 22(3):1593–1646, 2018.
- Y. Benoist. Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal., 7(1):1–47, 1997.
- Yves Benoist. Automorphismes des cônes convexes. Invent. Math., 141(1):149–193, 2000.
- Yves Benoist. Convexes divisibles. I. In Algebraic groups and arithmetic, pages 339–374. Tata Inst. Fund. Res., Mumbai, 2004.
- Yves Benoist. Convexes divisibles. III. Ann. Sci. École Norm. Sup. (4), 38(5):793–832, 2005.
- Yves Benoist. Convexes divisibles. IV. Structure du bord en dimension 3. Invent. Math., 164(2):249–278, 2006.
- Yves Benoist. Convexes hyperboliques et quasiisométries. Geom. Dedicata, 122:109–134, 2006.
- Yves Benoist. A survey on divisible convex sets. In Geometry, analysis and topology of discrete groups, volume 6 of Adv. Lect. Math. (ALM), pages 1–18. Int. Press, Somerville, MA, 2008.
- A characterization of higher rank symmetric spaces via bounded cohomology. Geometric and Functional Analysis, 19(1):11–40, 2009.
- Pierre-Louis Blayac. The boundary of rank-one divisible convex sets, 2021.
- Pierre-Louis Blayac. Patterson–Sullivan densities in convex projective geometry. arXiv e-prints, page arXiv:2106.08089, June 2021.
- M. Burger and N. Monod. Continuous bounded cohomology and applications to rigidity theory. Geom. Funct. Anal., 12(2):219–280, 2002.
- Random walks on reductive groups, volume 62. Springer, Cham, 2016.
- Manifolds of nonpositive curvature and their buildings. Inst. Hautes Études Sci. Publ. Math., (65):35–59, 1987.
- Divisible convex sets with properly embedded cones. arXiv e-prints, page arXiv:2302.07177, February 2023.
- Convex projective generalized Dehn filling. arXiv e-prints, page arXiv:1611.02505, Nov 2016.
- On convex projective manifolds and cusps. Advances in Mathematics, 277:181–251, 2015.
- Finitude géométrique en géométrie de Hilbert. Ann. Inst. Fourier (Grenoble), 64(6):2299–2377, 2014.
- Matthew Cordes. Morse boundaries of proper geodesic metric spaces. Groups Geom. Dyn., 11(4):1281–1306, 2017.
- Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal., 21(4):851–891, 2011.
- Recognizing a relatively hyperbolic group by its Dehn fillings. Duke Math. J., 167(12):2189–2241, 2018.
- Convex cocompact actions in real projective geometry. arXiv e-prints, page arXiv:1704.08711, Apr 2017.
- Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Amer. Math. Soc., 245(1156):v+152, 2017.
- Pierre de la Harpe. On Hilbert’s metric for simplices. In Geometric group theory, Vol. 1 (Sussex, 1991), volume 181 of London Math. Soc. Lecture Note Ser., pages 97–119. Cambridge Univ. Press, Cambridge, 1993.
- Roberto Frigerio. Bounded cohomology of discrete groups, volume 227 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2017.
- Anosov representations and proper actions. Geom. Topol., 21(1):485–584, 2017.
- M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math. Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.
- Yves Guivarc’h. Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire. Ergodic Theory and Dynamical Systems, 10(3):483–512, 1990.
- Counting conjugacy classes in groups with contracting elements. arXiv preprint arXiv:1810.02969, 2018.
- Mitul Islam. Rank One Phenomena in Convex Projective Geometry. PhD thesis, University of Michigan, 2021.
- A flat torus theorem for convex co-compact actions of projective linear groups. Journal of the London Mathematical Society, 103(2):470–489, 2021.
- Convex cocompact actions of relatively hyperbolic groups. Geom. Topol., 27(2):417–511, 2023.
- Michael Kapovich. Convex projective structures on gromov–thurston manifolds. Geom. Topol., 11(3):1777–1830, 2007.
- Curvature in Hilbert geometries. Pacific J. Math., 8:119–125, 1958.
- G. A. Margulis. Discrete subgroups of semisimple Lie groups, volume 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.
- Ludovic Marquis. Around groups in hilbert geometry. arXiv preprint arXiv:1303.7099, 2013.
- Roger D. Nussbaum. Hilbert’s projective metric and iterated nonlinear maps. Mem. Amer. Math. Soc., 75(391):iv+137, 1988.
- Denis Osin. Acylindrically hyperbolic groups. Transactions of the American Mathematical Society, 368(2):851–888, 2016.
- Samantha Pinella. Hilbert domains, Conics, and Rigidity. PhD thesis, University of Michigan, 2020.
- Russell Ricks. A rank rigidity result for cat(0) spaces with one-dimensional tits boundaries. Forum Mathematicum, 31(5):1317–1330, Sep 2019.
- Alessandro Sisto. Projections and relative hyperbolicity. Enseign. Math. (2), 59(1-2):165–181, 2013.
- Alessandro Sisto. Contracting elements and random walks. J. Reine Angew. Math., 742:79–114, 2018.
- Andrew Zimmer. A higher-rank rigidity theorem for convex real projective manifolds. Geom. Topol., 27(7):2899–2936, 2023.