Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homogenization of the time-dependent heat equation on planar one-dimensional periodic structures (1912.12989v1)

Published 30 Dec 2019 in math.AP

Abstract: In this paper we consider the homogenization of a time-dependent heat conduction problem on a planar one-dimensional periodic structure. On the edges of a graph the one-dimensional heat equation is posed, while the Kirchhoff junction condition is applied at all (inner) vertices. Using the two-scale convergence adapted to homogenization of lower-dimensional problems we obtain the limit homogenized problem defined on a two-dimensional domain that is occupied by the mesh when the mesh period $\delta$ tends to $0$. The homogenized model is given by the classical heat equation with the conductivity tensor depending on the unit cell graph only through the topology of the graph and lengthes of its edges. We show the well-posedness of the limit problem and give a purely algebraic formula for the computation of the homogenized conductivity tensor. The analysis is completed by numerical experiments showing a convergence to the limit problem where the convergence order in $\delta$.

Summary

We haven't generated a summary for this paper yet.