Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supermodeling of tumor dynamics with parallel isogeometric analysis solver (1912.12836v4)

Published 30 Dec 2019 in cs.CE

Abstract: Supermodeling is a modern, model-ensembling paradigm that integrates several self-synchronized imperfect sub-models by controlling a few meta-parameters to generate more accurate predictions of complex systems' dynamics. Continual synchronization between sub-models allows for trajectory predictions with superior accuracy compared to a single model or a classical ensemble of independent models whose decision fusion is based on the majority voting or averaging the outcomes. However, it comes out from numerous observations that the supermodeling procedure's convergence depends on a few principal factors such as (1) the number of sub-models, (2) their proper selection, and (3) the choice of the convergent optimization procedure, which assimilates the supermodel meta-parameters to data. Herein, we focus on modeling the evolution of the system described by a set of PDEs. We prove that supermodeling is conditionally convergent to a fixed-point attractor regarding only the supermodel meta-parameters. We investigate the formal conditions of the convergence of the supermodeling scheme theoretically. We employ the Banach fixed point theorem for the supermodeling correction operator, updating the synchronization constants' values iteratively. The "nudging" of the supermodel to the ground truth should be well balanced because both too small and too large attraction to data cause the supermodel desynchronization. The time-step size can control the convergence of the training procedure, by balancing the Lipshitz continuity constant of the PDE operator. All the sub-models have to be close to the ground-truth along the training trajectory but still sufficiently diverse to explore the phase space better. As an example, we discuss the three-dimensional supermodel of tumor evolution to demonstrate the supermodel's perfect fit to artificial data generated based on real medical images.

Citations (1)

Summary

We haven't generated a summary for this paper yet.