Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Policy Distillation in Deep Reinforcement Learning (1912.12630v1)

Published 29 Dec 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Policy distillation in deep reinforcement learning provides an effective way to transfer control policies from a larger network to a smaller untrained network without a significant degradation in performance. However, policy distillation is underexplored in deep reinforcement learning, and existing approaches are computationally inefficient, resulting in a long distillation time. In addition, the effectiveness of the distillation process is still limited to the model capacity. We propose a new distillation mechanism, called real-time policy distillation, in which training the teacher model and distilling the policy to the student model occur simultaneously. Accordingly, the teacher's latest policy is transferred to the student model in real time. This reduces the distillation time to half the original time or even less and also makes it possible for extremely small student models to learn skills at the expert level. We evaluated the proposed algorithm in the Atari 2600 domain. The results show that our approach can achieve full distillation in most games, even with compression ratios up to 1.7%.

Citations (5)

Summary

We haven't generated a summary for this paper yet.