Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Active Learning in Video Tracking (1912.12557v3)

Published 29 Dec 2019 in cs.LG, cs.CV, and stat.ML

Abstract: Active learning methods, like uncertainty sampling, combined with probabilistic prediction techniques have achieved success in various problems like image classification and text classification. For more complex multivariate prediction tasks, the relationships between labels play an important role in designing structured classifiers with better performance. However, computational time complexity limits prevalent probabilistic methods from effectively supporting active learning. Specifically, while non-probabilistic methods based on structured support vector machines can be tractably applied to predicting bipartite matchings, conditional random fields are intractable for these structures. We propose an adversarial approach for active learning with structured prediction domains that is tractable for matching. We evaluate this approach algorithmically in an important structured prediction problems: object tracking in videos. We demonstrate better accuracy and computational efficiency for our proposed method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Sima Behpour (9 papers)
Citations (3)