Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alleviation of Gradient Exploding in GANs: Fake Can Be Real (1912.12485v2)

Published 28 Dec 2019 in cs.LG, cs.CV, and eess.IV

Abstract: In order to alleviate the notorious mode collapse phenomenon in generative adversarial networks (GANs), we propose a novel training method of GANs in which certain fake samples are considered as real ones during the training process. This strategy can reduce the gradient value that generator receives in the region where gradient exploding happens. We show the process of an unbalanced generation and a vicious circle issue resulted from gradient exploding in practical training, which explains the instability of GANs. We also theoretically prove that gradient exploding can be alleviated by penalizing the difference between discriminator outputs and fake-as-real consideration for very close real and fake samples. Accordingly, Fake-As-Real GAN (FARGAN) is proposed with a more stable training process and a more faithful generated distribution. Experiments on different datasets verify our theoretical analysis.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Song Tao (3 papers)
  2. Jia Wang (163 papers)
Citations (14)