Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Few-shot Learning via Self-supervised Training (1912.12178v1)

Published 20 Dec 2019 in cs.CV and cs.LG

Abstract: Learning from limited exemplars (few-shot learning) is a fundamental, unsolved problem that has been laboriously explored in the machine learning community. However, current few-shot learners are mostly supervised and rely heavily on a large amount of labeled examples. Unsupervised learning is a more natural procedure for cognitive mammals and has produced promising results in many machine learning tasks. In the current study, we develop a method to learn an unsupervised few-shot learner via self-supervised training (UFLST), which can effectively generalize to novel but related classes. The proposed model consists of two alternate processes, progressive clustering and episodic training. The former generates pseudo-labeled training examples for constructing episodic tasks; and the later trains the few-shot learner using the generated episodic tasks which further optimizes the feature representations of data. The two processes facilitate with each other, and eventually produce a high quality few-shot learner. Using the benchmark dataset Omniglot and Mini-ImageNet, we show that our model outperforms other unsupervised few-shot learning methods. Using the benchmark dataset Market1501, we further demonstrate the feasibility of our model to a real-world application on person re-identification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zilong Ji (3 papers)
  2. Xiaolong Zou (27 papers)
  3. Tiejun Huang (130 papers)
  4. Si Wu (56 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.