Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Lead Bias for Zero-shot Abstractive News Summarization (1912.11602v4)

Published 25 Dec 2019 in cs.CL

Abstract: A typical journalistic convention in news articles is to deliver the most salient information in the beginning, also known as the lead bias. While this phenomenon can be exploited in generating a summary, it has a detrimental effect on teaching a model to discriminate and extract important information in general. We propose that this lead bias can be leveraged in our favor in a simple and effective way to pre-train abstractive news summarization models on large-scale unlabeled news corpora: predicting the leading sentences using the rest of an article. We collect a massive news corpus and conduct data cleaning and filtering via statistical analysis. We then apply self-supervised pre-training on this dataset to existing generation models BART and T5 for domain adaptation. Via extensive experiments on six benchmark datasets, we show that this approach can dramatically improve the summarization quality and achieve state-of-the-art results for zero-shot news summarization without any fine-tuning. For example, in the DUC2003 dataset, the ROUGE-1 score of BART increases 13.7% after the lead-bias pre-training. We deploy the model in Microsoft News and provide public APIs as well as a demo website for multi-lingual news summarization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chenguang Zhu (100 papers)
  2. Ziyi Yang (77 papers)
  3. Robert Gmyr (20 papers)
  4. Michael Zeng (76 papers)
  5. Xuedong Huang (22 papers)
Citations (18)