Papers
Topics
Authors
Recent
Search
2000 character limit reached

Enforcing strong stability of explicit Runge--Kutta methods with superviscosity

Published 25 Dec 2019 in math.NA and cs.NA | (1912.11596v1)

Abstract: A time discretization method is called strongly stable, if the norm of its numerical solution is nonincreasing. It is known that, even for linear semi-negative problems, many explicit Runge--Kutta (RK) methods fail to preserve this property. In this paper, we enforce strong stability by modifying the method with superviscosity, which is a numerical technique commonly used in spectral methods. We propose two approaches, the modified method and the filtering method for stabilization. The modified method is achieved by modifying the semi-negative operator with a high order superviscosity term; the filtering method is to post-process the solution by solving a diffusive or dispersive problem with small superviscosity. For linear problems, most explicit RK methods can be stabilized with either approach without accuracy degeneration. Furthermore, we prove a sharp bound (up to an equal sign) on diffusive superviscosity for ensuring strong stability. The bound we derived for general dispersive-diffusive superviscosity is also verified to be sharp numerically. For nonlinear problems, a filtering method is investigated for stabilization. Numerical examples with linear non-normal ordinary differential equation systems and for discontinuous Galerkin approximation of conservation laws are performed to validate our analysis and to test the performance.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.