Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universal Rank Inference via Residual Subsampling with Application to Large Networks (1912.11583v3)

Published 25 Dec 2019 in math.ST and stat.TH

Abstract: Determining the precise rank is an important problem in many large-scale applications with matrix data exploiting low-rank plus noise models. In this paper, we suggest a universal approach to rank inference via residual subsampling (RIRS) for testing and estimating rank in a wide family of models, including many popularly used network models such as the degree corrected mixed membership model as a special case. Our procedure constructs a test statistic via subsampling entries of the residual matrix after extracting the spiked components. The test statistic converges in distribution to the standard normal under the null hypothesis, and diverges to infinity with asymptotic probability one under the alternative hypothesis. The effectiveness of RIRS procedure is justified theoretically, utilizing the asymptotic expansions of eigenvectors and eigenvalues for large random matrices recently developed in [11] and [12]. The advantages of the newly suggested procedure are demonstrated through several simulation and real data examples.

Summary

We haven't generated a summary for this paper yet.