2000 character limit reached
Computing Garsia Entropy for Bernoulli Convolutions with Algebraic Parameters (1912.10987v3)
Published 23 Dec 2019 in math.CA, math.DS, and math.NT
Abstract: We introduce a parameter space containing all algebraic integers $\beta\in(1,2]$ that are not Pisot or Salem numbers, and a sequence of increasing piecewise continuous function on this parameter space which gives a lower bound for the Garsia entropy of the Bernoulli convolution $\nu_{\beta}$. This allows us to show that $\mathrm{dim}\mathrm{H} (\nu{\beta})=1$ for all $\beta$ with representations in certain open regions of the parameter space.