Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Siamese Networks for Large-Scale Author Identification (1912.10616v3)

Published 23 Dec 2019 in cs.CL

Abstract: Authorship attribution is the process of identifying the author of a text. Approaches to tackling it have been conventionally divided into classification-based ones, which work well for small numbers of candidate authors, and similarity-based methods, which are applicable for larger numbers of authors or for authors beyond the training set; these existing similarity-based methods have only embodied static notions of similarity. Deep learning methods, which blur the boundaries between classification-based and similarity-based approaches, are promising in terms of ability to learn a notion of similarity, but have previously only been used in a conventional small-closed-class classification setup. Siamese networks have been used to develop learned notions of similarity in one-shot image tasks, and also for tasks of mostly semantic relatedness in NLP. We examine their application to the stylistic task of authorship attribution on datasets with large numbers of authors, looking at multiple energy functions and neural network architectures, and show that they can substantially outperform previous approaches.

Citations (37)

Summary

We haven't generated a summary for this paper yet.