Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A formula for the time derivative of the entropic cost and applications (1912.10555v2)

Published 22 Dec 2019 in math.PR

Abstract: In the recent years the Schr\"odinger problem has gained a lot of attention because of the connection, in the small-noise regime, with the Monge-Kantorovich optimal transport problem. Its optimal value, the \emph{entropic cost} $\mathscr{C}_T$, is here deeply investigated. In this paper we study the regularity of $\mathscr{C}_T$ with respect to the parameter $T$ under a curvature condition and explicitly compute its first and second derivative. As applications: - we determine the large-time limit of $\mathscr{C}_T$ and provide sharp exponential convergence rates; we obtain this result not only for the classical Schr\"odinger problem but also for the recently introduced Mean Field Schr\"odinger problem [3]; - we improve the Taylor expansion of $T \mapsto T\mathscr{C}_T$ around $T=0$ from the first to the second order.

Summary

We haven't generated a summary for this paper yet.