Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting Style and Attention in Real-World Super-Resolution (1912.10227v2)

Published 21 Dec 2019 in cs.CV and eess.IV

Abstract: Real-world image super-resolution (SR) is a challenging image translation problem. Low-resolution (LR) images are often generated by various unknown transformations rather than by applying simple bilinear down-sampling on high-resolution (HR) images. To address this issue, this paper proposes a novel pipeline which exploits style and attention mechanism in real-world SR. Our pipeline consists of a style Variational Autoencoder (styleVAE) and a SR network incorporated with attention mechanism. To get real-world-like low-quality images paired with the HR images, we design the styleVAE to transfer the complex nuisance factors in real-world LR images to the generated LR images. We also use mutual information estimation (MI) to get better style information. For our SR network, we firstly propose a global attention residual block to learn long-range dependencies in images. Then another local attention residual block is proposed to enforce the attention of SR network moving to local areas of images in which texture detail will be filled. It is worth noticing that styleVAE can be presented in a plug-and-play manner and thus can help to improve the generalization and robustness of our SR method as well as other SR methods. Extensive experiments demonstrate that our method surpasses the state-of-the-art work, both quantitatively and qualitatively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.